
Dököll Solutions, Inc.
Application Development

Project Name: App Journals Start Date: 2021.10.18.4.16.PM

Purpose: Create Google Sheets v4 App
Configuration Instructions

End Date: 2021.10.24.12.33.AM

Language: Java, Script Environment: Google Cloud, Gradle
NetBeans

Employee Name: Dököll Solutions Employee ID: Dököll Solutions
Task(s): Java App Configuration/Setup Document: Journal Entries

How-To Create a Google Sheets v4 Java Project

System Requirements

Software/Environment Language/Technology Protocol/Framework/Platform
Microsoft Windows 7, 8, 10 VBScript, Batch Active Directory, WORKGROUP

Microsoft Edge N/A TCPIP, HTTP, Browser

Google Chrome N/A TCPIP, HTTP, Browser

Mozilla Firefox N/A TCPIP, HTTP, Browser

Google Drive Account N/A HTTP, Browser

Apache NetBeans 12.x.x Java 1.8.xxx HTTP, TCPIP, IDE

Apache Tomcat 8.5 Command, Batch HTTP, TCPIP, Web Server

Gradle 7 Command, Batch HTTP, TCPIP, Plugin

Disclaimer:
Information contained in the following is presented as is. This document assumes you have basic
programming and software configuration knowledge. All Java samples are based on NetBeans and
Gradle to connect to Google Sheets v4, using the Google Drive and Google Sheets APIs, see System
Requirements for additional information. Should you need to familiarize yourself with Google Sheets
v4, Google APIs, Apache NetBeans, and Gradle environments, prior to continuing, stop now and see
our Journal Entries page on our website: www.dokollsolutionsinc.com for additional support...

http://www.dokollsolutionsinc.com/

Foreword:
Samples included in this Journal Entries document are part of a series, be sure to consult other versions
of the documentation to benefit in full.

Introduction:
Configure a Google Cloud Console environment to prepare for a Java application to read, write, and
update Google Sheets v4 spreadsheets data located on Google Drive. This documentation assumes a
Google account has already been setup and Google Drive is accessible. Developers should be ready to
spend a good amount of time configuring their local coding environments. For example, an Integrated
Development Environment (IDE) that runs Java should be installed on a computer or server box.
Google API credentials are needed to authenticate to the Google Cloud infrastructure, they must be
setup prior to creating an application on the Cloud Console, and prior to connecting the local developer
IDE to the Cloud App. Once the IDE and access to the Cloud environment are properly configured,
you are half way there; you are now ready to create a Google Sheets v4 project. Without further-a-do,
let us begin... The specifics of the project and all areas of interest will be highlighted in this document
as guide.

Journal Entry
2021.10.18.4.16.PM

The following steps about creating a Google Cloud Platform project was copied directly from Google
to help you begin your journey. We will add to the instructions as we see fit so that you understand it
the way we understand it.

Step 1: Create a Google Cloud Project

To use Google Workspace APIs, you need a Google Cloud Platform project. This project forms the
basis for creating, enabling, and using all GCP services, including managing APIs, enabling billing,
adding and removing collaborators, and managing permissions.

1. Open the Google Cloud Console. (Google Account should be created prior)

2. Next to "Google Cloud Platform," click the Down arrow arrow_drop_down . A
dialog listing current projects appears.

3. Click New Project. The New Project screen appears.

4. In the Project Name field, enter a descriptive name for your project. If you're executing
a quickstart, use "Quickstart." (Example: Our existing project is called SocialMedia)

5. (Optional) To edit the Project ID, click Edit. The project ID can't be changed after the
project is created, so choose an ID that meets your needs for the lifetime of the project.

6. Click Organization and select your organization.

7. In the Location field, click Browse to display potential locations for your project.

8. Click a location and click Select.

https://console.cloud.google.com/

9. Click Create. The console navigates to the Dashboard page and your project is created
within a few minutes.

Enable a Google Workspace API

1. Open the Google Cloud Console.

2. Next to "Google Cloud Platform," click the Down arrow arrow_drop_down and
select a project.

3. In the top-left corner, click Menu menu > APIs & Services.

4. Click Enable APIs and Services. The Welcome to API Library page appears.

5. In the search field, enter the name of the API you want to enable. For example, type
"Google Drive API" to find the Google Drive API. If you are enabling an API for a
quickstart, refer to the quickstart's Prerequisites section for the API to enable.

6. Click the API to enable. The API page appears.

7. Click Enable. The Overview page appears.

8. To enable an additional API, (i.e. Google Sheets v4), repeat steps 3 - 7.

Here is a list of requirements for this project. As we go through them, we will show you the ones that
are necessary.

Manage APIs in the API Console
This is where you enable and disable APIs, manage and view traffic data, and set up authentication.
The console is also where you manage billing for the Google APIs that you use.

l Enable and disable APIs
l Credentials, access, security, and identity
l Setting up OAuth 2.0
l Setting up API keys
l Best practices for securely using API keys
l Monitoring APIs
l Capping API usage
l APIs and Billing
l Verifying domains for push notifications

Hint: You cannot skip the following steps, you will not have access to the APIs to run your project...
We shortened the above list for you. They are important but do not apply here since this is a developer
sample meant to test out Google Sheets.

l Enable and disable APIs
l Credentials, access, security, and identity
l Setting up OAuth 2.0
l Setting up API keys
l Verifying domains for push notifications

https://support.google.com/googleapi/answer/7072069
https://support.google.com/googleapi/answer/6158862
https://support.google.com/googleapi/answer/6158849
https://support.google.com/googleapi/answer/6158857
https://support.google.com/googleapi/answer/6158841
https://support.google.com/googleapi/answer/7072069
https://support.google.com/googleapi/answer/6158867
https://support.google.com/googleapi/answer/7035610
https://support.google.com/googleapi/answer/7036164
https://support.google.com/googleapi/answer/6310037
https://support.google.com/googleapi/answer/6158862
https://support.google.com/googleapi/answer/6158849
https://support.google.com/googleapi/answer/6158857
https://support.google.com/googleapi/answer/6158841
https://console.cloud.google.com/

Screenshots for Enabling APIs

Enable your APIs as seen below.... We have already done this, but we are going to show you which
APIs you will need for your Java project-

You will need to enable both the Google Drive and Google Sheets APIs in this case....

Step 2: Create Credentials for a Google Cloud Project

Once the right APIs are enabled, you can begin creating your Google Sheets Java Application Project...
We will go through some of the steps with you. In Step 1, you created the project and you enabled
both Google Drive and Google Sheets v4 APIs. Now, you will need to create an API key and a Client
id in the credentials portion of the Google Cloud Console prior to writing code to read, write, and
update spreadsheets data. Depending on your project or the type of authentication method you choose,
you will get approval quickly from Google. Also, be aware that the scopes you choose also impact the
wait time for you to get approved by Google to connect to their infrastructure. We will go through the
types of scopes to choose later in this Journal Entries segment. Follow the steps below to create an API
key for your project.

This information was copied directly from the Google Cloud Console page, and just as we have done in
the first step above when creating our project, we will also modify the text to save you the effort of
figuring out what certain sets of instructions mean. We will also show you what the setup should look
like after the instructions.

Managing API keys

We recommend you use the Cloud Console to manage API keys. Navigate to the APIs & services →
Credentials page in the Cloud Console. Your API keys are shown in the API keys section. On this
page, you can create API keys, define API key restrictions, rotate API key strings, and take other
actions.

https://console.cloud.google.com/apis/credentials
https://console.cloud.google.com/apis/credentials

Creating an API key

To create an API key in a project, the user must be granted the Editor basic role (roles/editor) on
the project. See basic roles for more information.

To create an API key:

1. Navigate to the APIs & Services→Credentials panel in Cloud Console.
2. Select Create credentials, then select API key from the dropdown menu.

The API key created dialog box displays your newly created key.

An API key is a long string containing upper and lower case letters, numbers, and dashes, such
as a4db08b7-5729-4ba9-8c08-f2df493465a1. In this case, Google will simply create the
key for you. You can pretty much just accept all defaults.

You should copy your key and keep it secure. Unless you are using a testing key that you intend to
delete later, add application and API key restrictions.

Next step is a very crucial one, you will need an OAuth 2.0 Client ID for your project, this will allow
you to download the credentials file (JSON format) to plug into your Java application to gain access to
your Google Cloud Project from your IDE.

Create the OAuth Web Client ID

In the Google Cloud Console, create the OAuth web client ID for the Google Workspace Migrate
platform.

1. In the Cloud Console, open the project you created earlier.
Note: If you manually created a service account, the project was created in Step 1: Use
the Google Cloud Console to turn on APIs. If you created the project using a script, the project
name is listed in the Cloud Shell Editor after the script runs.

2. Click APIs & Services OAuth consent screen.
3. Set User Type to Internal and click Create.
4. In the Application name field, enter a name and click Save.
5. In the left menu, click Credentials.
6. Click Create credentials OAuth client ID.
7. Select Web application.
8. In the Name field, enter a name for the OAuth web client.
9. In the Authorized JavaScript origins field, enter the URL that you’ll use to access the Google

Workspace Migrate platform (for example, http://localhost:5131).
10. Click Create.
11. Make a note of the client ID shown in the Client ID field. You’ll need it when you set

up the Google Workspace Migrate platform.
Tip: You can also access the client ID from APIs & Service Credentials.

12. Click OK.

Hint: For Step 9 above, we have Apache Tomcat running, which loads in the browser using port 80,

https://support.google.com/workspacemigrate/answer/10839762#step1
https://support.google.com/workspacemigrate/answer/10839762#step1
https://console.cloud.google.com/
https://cloud.google.com/docs/authentication/api-keys#api_key_restrictions
https://console.cloud.google.com/apis/credentials
https://cloud.google.com/iam/docs/understanding-roles#basic

thus our URL carries four digits 8080- this will make more sense when we attempt to connect...

Your credentials screen should look similarly to below. Obviously, for security purposes we cannot
show you all of the data.

Food for Thought:
It is important to re-create your API key and Client ID to limit interaction with your Google Cloud
credentials. You can do this right from the above Credentials page.

From here, you can click the copy or edit button at right in the API keys section to copy the full API
key for your project. Please note, the API key name is NOT your Project name, and the API key name
will not be used in the application. You will need to download the OAuth Client ID to your computer
or server box. The file will be a JSON file containing some credentials data generated when you create
the API key and Client ID. You will need to import that file into NetBeans later, so make sure that you
know where the JSON is downloaded to, so you can retrieve it.

Google Cloud App Verification/Consent

Next step is get consent from Google to run code and reach their platform. This process helps verify
your application can run when launched in your browser. Eventually, when you run your Java program
locally, it will make an attempt to connect to Google. You will be prompted to sign in to your Google
account to gain application/project access to your Google Sheets data.

Once you give your Google account Cloud App permission to run, it will send a one-time message to
Google to verify and accept the connection from your local NetBeans App. There may be reasons why
Google does not allow the connection to take place. This may be due to the way you filled out the
consent form. This is where Project Scopes are important. We will show you how to get verification
for your App now, then go into what scopes to choose for your App to run.

To submit for verification, follow the steps below:

1. Go to the Cloud Console OAuth consent screen page.
2. Click the Project selector drop-down at the top of the page.
3. On the Select from dialog that appears, select your project.

https://console.cloud.google.com/apis/credentials/consent

l If you can't find your project, and you know your project ID, you can construct a
URL in your browser in the
format https://console.cloud.google.com/apis/credentials/cons
ent?project=[PROJECT_ID] where [PROJECT_ID] is the project ID you want to
use.

4. Click the Edit App button.
5. Enter the information required on the configuration page,
 and then click Submit for verification. If the submit for verification button does not
 appear at the end of the configuration pages, save what you have completed and repeat
 steps 1-4.
6. Once you click Submit for Verification, a Verification required dialog box will appear,
 enter the appropriate justifications, and then click Submit to start the verification
 process.

Your Java application will have the scope hard-coded to run properly, but during your consent process,
you will need to choose scope information that determines the security of the Cloud App- Below is a
screenshot of the scopes to keep in mind when you are filling out your consent form.

Verification form sent, Now what?

At first glance, it may seem that verification is still needed for our application. But, our application is
up and running and the message is still present. It is safe to say that if your App is not prompting for
permission through your browser, you are good to go. You are likely not going to have an In Progress
message in your trials. We wanted to post this screenshot anyway in case you see it, so you do not
think you are out of luck or cannot continue. Truth is, you can... Keep reading to learn more...

Now, we are prepared to create our local application. All credentials are in place, we have downloaded
the JSON file to reference in our project from the IDE. We are ready to take the next step to be able to
use the Google Sheets v4 Quickstart sample.

Journal Entry
2021.10.18.6.51.PM

Step 3: Install NetBeans, Prepare for Google Sheets App

Let us first go through some instructions to install the Apache NetBeans IDE that we will be using to
launch the Google Quickstart Java sample. For this document, we are using NetBeans, it comes with
Gradle but you can download Gradle separately as a Standalone application to run the Google Sheets
v4 sample. Once you've had a chance to go through this documentation, it will make more sense as to
why we are choosing NetBeans as opposed to the Standalone Gradle software.

You should follow the instructions on this page very well. Google does a pretty good job providing the
right information here to begin your Java project. It is quite obvious that you will need to do some of
the leg work yourself. Since you will be starting a project in the NetBeans IDE as a Gradle project,
there are certain configuration steps that must take place. In this Java Quickstart provided by Google,
the version of Gradle being suggested is 2.3 or higher. You can use any Gradle version as long as it is
at least 2.3. If you are comfortable with setting up your own IDE, just make sure that Gradle is either
integrated or that you can download the plugin to set it up in your project. In our case, we are using
Apache NetBeans 12 because it is conveniently packaged with Gradle 7. We would recommend
using NetBeans 12 since this is what we are using for this Journal Entries segment. Here is where you

can download that version:

https://NetBeans.apache.org/download/nb120/nb120.html

We are also providing a screenshot to show you the file we actually downloaded. Again, you can do
whatever you want, as long as you have an IDE that runs Java and Gradle.

The highlighted link corresponds to the following
https://www.apache.org/dyn/closer.cgi/NetBeans/NetBeans/12.0/Apache-NetBeans-12.0-bin-windows-
x64.exe

which allows you to download/install from the following page

Journal Entry
2021.10.19.11.03.PM

https://www.apache.org/dyn/closer.cgi/netbeans/netbeans/12.0/Apache-NetBeans-12.0-bin-windows-x64.exe
https://www.apache.org/dyn/closer.cgi/netbeans/netbeans/12.0/Apache-NetBeans-12.0-bin-windows-x64.exe
https://netbeans.apache.org/download/nb120/nb120.html

At this point, we assume you installed NetBeans 12 from the URL posted above. You will be needing
to copy the Quickstart Java sample from the following Google Sheets v4 webpage:
https://developers.google.com/sheets/api/quickstart/java

We want you to copy and paste the code into your environment without configuring the IDE to give
you the ins and outs of working with the Google code; this will also help you get a better experience
with this documentation. Right away, you will find that your code has a lot of errors. What we found
out is even though we have all of the Google Sheets-specific imports in place, we still needed to do
more configuration. Let us go through the steps now one by one...

Prepare to Use Google Sheets v4 code

As usual, we will post screenshots of the Google instructions and add our own, as we understand it.
Again, you can use any IDE you wish to do this, as long as the Gradle plugin is available and you know
how to configure your own environment. You can skip the Gradle portion in the screenshot below if
you are using NetBeans. We did put some System Requirements atop this document, we assume you
know which version of Gradle and Java being used in these Journal Entries...

We have already taken care of creating a project, enabling APIs, and creating credentials in Steps 1 and
2 above. If you were following along, you are ahead of the game...

You can skip below as well since we are using NetBeans 12, which comes with Gradle. And we hope
you did download the JSON file after creating your credentials. Be prepared to include the full file

https://developers.google.com/sheets/api/quickstart/java

name in your NetBeans/Gradle project.

Technical Notes:
In the screenshot above, you do need to pay attention to the folder structure stated in Step 2. Since we
are using NetBeans, and this may be your first time, it could get tricky. You actually do not need to
create a src folder. In this case, the Source and Main structures will be created for you once the Gradle
project is created. However, you will need to create the resources folder, you will get a pretty good
idea of the importance of this folder, once the project is created.

Before you start your local project, we want to make one point. Our environment may look different
than yours if you create your project as a Java Application as opposed to a Web Application. In our
case, we created a Gradle + Web Application. We did this because we're thinking ahead, we will need
to get database values into Google Sheets from a webpage which we will create in JSF (Java Server
Faces). So we wanted to have our environment ready for that. If you are going this route, we suggest
that you first download and install an Apache Tomcat Web Server to your computer or server box. We
are using Tomcat 8.5 currently, downloaded to our system for other projects, you can get the latest
version out there for your purpose.

You can either go online to fetch instructions on how to download and install Apache Tomcat or you
can read helpful information in documents posted in our Apache Tomcat webpage; just scroll down to
the downloadable content section of the page:

https://www.dokollsolutionsinc.com/JournalsApacheTomcatCoding.html

While creating your web project (provided you selected that option), you will be prompted to choose a
web server, you can go ahead and choose Apache Tomcat. We also have documentation on how to do
this in NetBeans on the same page.

Journal Entry
2021.10.20.6.13.AM

https://www.dokollsolutionsinc.com/JournalsApacheTomcatCoding.html

Step 4: Create NetBeans Java Web Application

Go ahead and launch NetBeans 12 IDE

In this case, we will start things off for you. We will create a skeleton a project to make some
comparisons between that and an existing working project, for educational purposes.

After launching NetBeans, you will be presented with the Splash screen, followed by the Start Page.
Before using NetBeans 12 you will need to Activate plugins that it comes with. We are going to post
all of the screenshots here to save you time reading.

Be sure to activate environments- NetBeans will make available features as needed...

NetBeans has pre-installed some defaults for us

Now you are ready to actually do some configuring and coding...

1. Go to File + New Project
2. Select Gradle, then Web Application (as seen below)

Hint: You can also start a new project without going through the file menu, by clicking on the
navigation bar/ribbon button, as seen below

We're going to create a new project to walk you through the basic steps, then jump ahead to showing
what our file structure looks like.

Provided you had already setup a server (Apache Tomcat) for your application or project, you would be
presented with the following screen in the wizard. Otherwise, you would be setting up a server here by
clicking the Add button. You might recall the URL we posted earlier, if not, take a look to download
and setup an Apache Tomcat Web Server. You can go ahead and do that, if you are creating a Java
Web Application.

In our case, after clicking finish, this is what our environment looked like. We will delete the test
application afterwards, but we want to show you the steps. We are going to create a Java class right
away though so the GoogleSheetsTest project structure closely matches our existing working model.
You are going to see a lot of errors in the code, just like we discussed earlier in this document.

Step 5: Create Java Class

Here are the steps to creating your first Java class in NetBeans:

1. Right-click on the project's Source Packages section
2. Choose New + Java Class
3. Name your new class SheetsQuickstart
4. Replace the generated class code with the full code from Google

Hint: It is a good idea to create a package for all of your Java classes to keep your code and the file
structure tidy. In our case, we called our package com.dokoll.solutions.inc.SocialMedia

Generated NetBeans Code sample

We went ahead and grabbed below Google Sheets sample for you, copy and paste it to your IDE:

https://developers.google.com/sheets/api/quickstart/java

import com.google.api.client.auth.oauth2.Credential;
import com.google.api.client.extensions.java6.auth.oauth2.AuthorizationCodeInstalledApp;
import com.google.api.client.extensions.jetty.auth.oauth2.LocalServerReceiver;
import com.google.api.client.googleapis.auth.oauth2.GoogleAuthorizationCodeFlow;
import com.google.api.client.googleapis.auth.oauth2.GoogleClientSecrets;
import com.google.api.client.googleapis.javanet.GoogleNetHttpTransport;
import com.google.api.client.http.javanet.NetHttpTransport;
import com.google.api.client.json.JsonFactory;
import com.google.api.client.json.jackson2.JacksonFactory;
import com.google.api.client.util.store.FileDataStoreFactory;
import com.google.api.services.sheets.v4.Sheets;
import com.google.api.services.sheets.v4.SheetsScopes;
import com.google.api.services.sheets.v4.model.ValueRange;
import java.io.FileNotFoundException;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.security.GeneralSecurityException;
import java.util.Collections;
import java.util.List;
public class SheetsQuickstart {
 private static final String APPLICATION_NAME = "Google Sheets API Java Quickstart";
 private static final JsonFactory JSON_FACTORY = JacksonFactory.getDefaultInstance();
 private static final String TOKENS_DIRECTORY_PATH = "tokens";
 /**
 * Global instance of the scopes required by this quickstart.
 * If modifying these scopes, delete your previously saved tokens/ folder.
 */
 private static final List<String> SCOPES =
Collections.singletonList(SheetsScopes.SPREADSHEETS_READONLY);
 private static final String CREDENTIALS_FILE_PATH = "/credentials.json";
 /**

https://developers.google.com/sheets/api/quickstart/java

 * Creates an authorized Credential object.
 * @param HTTP_TRANSPORT The network HTTP Transport.
 * @return An authorized Credential object.
 * @throws IOException If the credentials.json file cannot be found.
 */
 private static Credential getCredentials(final NetHttpTransport HTTP_TRANSPORT) throws
IOException {
 // Load client secrets.
 InputStream in = SheetsQuickstart.class.getResourceAsStream(CREDENTIALS_FILE_PATH);
 if (in == null) {
 throw new FileNotFoundException("Resource not found: " + CREDENTIALS_FILE_PATH);
 }
 GoogleClientSecrets clientSecrets = GoogleClientSecrets.load(JSON_FACTORY, new
InputStreamReader(in));
 // Build flow and trigger user authorization request.
 GoogleAuthorizationCodeFlow flow = new GoogleAuthorizationCodeFlow.Builder(
 HTTP_TRANSPORT, JSON_FACTORY, clientSecrets, SCOPES)
 .setDataStoreFactory(new FileDataStoreFactory(new
java.io.File(TOKENS_DIRECTORY_PATH)))
 .setAccessType("offline")
 .build();
 LocalServerReceiver receiver = new
LocalServerReceiver.Builder().setPort(8888).build();
 return new AuthorizationCodeInstalledApp(flow, receiver).authorize("user");
 }
 /**
 * Prints the names and majors of students in a sample spreadsheet:
 *
https://docs.google.com/spreadsheets/d/1BxiMVs0XRA5nFMdKvBdBZjgmUUqptlbs74OgvE2upms/edit
 */
 public static void main(String... args) throws IOException, GeneralSecurityException {
 // Build a new authorized API client service.
 final NetHttpTransport HTTP_TRANSPORT =
GoogleNetHttpTransport.newTrustedTransport();
 final String spreadsheetId = "1BxiMVs0XRA5nFMdKvBdBZjgmUUqptlbs74OgvE2upms";
 final String range = "Class Data!A2:E";
 Sheets service = new Sheets.Builder(HTTP_TRANSPORT, JSON_FACTORY,
getCredentials(HTTP_TRANSPORT))
 .setApplicationName(APPLICATION_NAME)
 .build();
 ValueRange response = service.spreadsheets().values()
 .get(spreadsheetId, range)
 .execute();
 List<List<Object>> values = response.getValues();
 if (values == null || values.isEmpty()) {
 System.out.println("No data found.");
 } else {
 System.out.println("Name, Major");
 for (List row : values) {
 // Print columns A and E, which correspond to indices 0 and 4.
 System.out.printf("%s, %s\n", row.get(0), row.get(4));
 }
 }
 }
}

As expected, you should have received a bunch of errors...

Hint: The above tool-tip was achieved by adding our mouse cursor on one of the error bubbles on
the number line, in this case, for the Credential class import.

Journal Entry
2021.10.20.12.15.PM

Okay, now that we have these errors, let us see what we can do to remove them so the code is clean and
ready to roll... We are going to take you through the steps to getting rid of the errors

Step 6: Create and Configure Project Dependencies

First, we will select the default build.gradle file that NetBeans created for us to show you the contents.
We're making it easier for you to see what we've added to our working project to connect to Google
Cloud. In the Test App below, the build file is missing a lot of important configuration items...

The dependencies portion is your friend. That is where all of the work will be done to import all of the
libraries to run Google Sheets v4 code in NetBeans. If you recall, we mentioned that NetBeans does a
lot of the work for us, as far as the file and folder structures for code and resources (i.e. src/main). If
you look above the Build Scripts section where the build.gradle file is located, you can see a Source
Packages section. That portion of the structure corresponds to src/main.

Now, we have the sample code, we know we need to configure the build.gradle file with dependency
information. How do we get started? Well, if you look below, the screenshot on the left is our test
project, the one on the right is the completed project. We have created a Resources folder to hold the
very important JSON file.

Project Structure: GoogleSheetsTest Project Structure: SocialMedia

We are going to come back to Gradle in a moment and skip ahead to showing you how to create a
placeholder (Resources folder) for the JSON file needed for the project.

Go ahead and create your own Resources folder in NetBeans to call the JSON file, here are the steps:

1. Right-click on the project package name (example: GoogleSheetsTest)
2. Choose New + Folder + call the folder Resources

Technical Notes:
It is a good idea to know where NetBeans puts your project files in your environment (i.e. computer or
server box). You will need to visit that Resources folder location to put the project's JSON file into. If
you recall, you downloaded a JSON file with credentials data from your Google Cloud Console
environment.

We installed NetBeans in the following directory. Let us go there to have a look:

Okay, that looks familiar, we can see both projects in the directory. However, we think you have seen
enough of the basics, so we are going to get rid of the test application. We are going to go ahead and
continue our documentation with the actual working project. Delete the test 'GoogleSheetsTest'
project, you can simply right-click and delete from the directory. NetBeans does a good job removing
all files if is done from the delete task within the IDE. You just have to right-click the project in the

explorer window and choose Delete. You should be presented with the following:

*If the project is still showing in the directory, you can just hit the refresh button in the Windows
Explorer path- or you can also right-click anywhere that is empty/blank in Windows Explorer, choose
Refresh in the menu...

Journal Entry
2021.10.20.4.55.PM

Let us get inside our SocialMedia project to see the file structure from a local directory stand-point.
Your Resources folder will be empty.

We made a special point to create a Sub-folder within the Resources folder called Google_Auth to put
our authentication-specific JSON file for the project. We will go through that important file in a
moment.

We also wanted you look at our Resources folder from the project file structure standpoint... Let us
have a look next...

Step 7: Create and Configure Project Dependencies

Here is what our Resources folder looks like from within the project

Resources Folder Structure Resources Folder Credentials

As mentioned previously, the highlighted portions are must-haves for your project to work. The other
piece of the puzzle is to configure the build.gradle file to pull in the library packages from the Google
APIs into the project. Once you have implemented all packages in the build.gradle file, all errors
showing in your code will vanish like magic.

We are going to show you what is included in our build.gradle file so you can see our configuration.
You should also take a good look at the Gradle configuration sample Google made available on their
website to compare. It is important to take a look at that because there are some important distinctions.

Below is Google's configuration of the Gradle project to run Google Sheets v4 code. If you are not
familiar with Gradle, there are tons of tutorials online about downloading Gradle and using it through
command-line code, the latest version can be found here: https://gradle.org/install/.

We have made it easier for you by having you run a Gradle project within a UI instead. We understand
that to some beginners, command-line programming can be daunting, that is where NetBeans comes
in... Now, take look at the configuration below, based on Gradle 2.3. The file makes use of a variable
mainClassName to allow your project to call and run the Quickstart (SheetsQuickstart.java) sample as
the default class.

Obviously, you can switch to any other Java class as needed. Go ahead and compare the two
screenshots below, then we will dive into why they are important in the configuration...

https://gradle.org/install/

Google Sheets v4 Gradle Configuration

Google Sheets v4 Gradle Configuration in NetBeans

In addition to the mainClassName variable, you have to tell Gradle which JDK (Java Development
Kid) is currently installed on the current machine so that your program uses that version, identified by
the sourceCompatibility variable. Furthermore, the configuration pulls in Google API, Oauth, and
Sheets packages/classes using the dependencies block. This is a major difference in the way NetBeans
uses the power of Gradle to call Google classes into the project to run Google Sheets v4 code versus a
standard Standalone Gradle application.

Standalone Gradle compiles packages from Google APIs

Gradle in NetBeans implements packages from Google APIs

Provided your Gradle project is ready to be run, go ahead and Clean/Build your project to ensure all
errors in your code go away... You should also Run Gradle to make certain that the implementation is
solid.

Clean and Build Gradle Project Run Gradle Tasks

In our case, after Cleaning and Building our project we got the following results; we're making
available an excerpt of the readout-

the implementation of Google API packages need to be checked too, so the way to do this is to run the
tasks in Gradle. As in the above screenshot at right, once you select Tasks, you are presented with the
following-

From here, you can run a set of command-line code samples to ensure all is well. However, we will
skip that step since we're mostly concerned with ensuring that our implementation of Google packages
are good to go- You can just hit okay.

At this point, if your Gradle configuration was not properly setup, after hitting okay you would have
received some build script errors- We are going to actually use the build.gradle code as is from Google
to show you what we mean.

Okay, so now, we're going to Clean and Build the project in NetBeans... you should see that Gradle
could not locate Google API packages...

that is just an excerpt of the full error message but you can plainly see the method called “compile” is
not recognized...

We are going to also run Gradle Tasks so you can observe what the Gradle project in NetBeans
generates this time around...

Again, that is just a portion of the full error log... this proves our point before, that the compile method
will only work through the Standalone Gradle project but not within NetBeans. We suspect it may
have the same behaviour in other IDEs but that is yet be tested....

We're putting the build.gradle file back to normal and Cleaning/Building the project again...

Okay, so, you Cleaned and Rebuilt your Gradle project and all look good, now what? Well, let us
connect the local NetBeans/Gradle Java application to Google to see what we can pull up-

Journal Entry
2021.10.21.7.01.PM

The Google Sheets Quickstart code is merely a sample, which means that you cannot just copy and
paste the code into your IDE and expect it to work, even though you had gone through your NetBeans
configurations and Gradle throws no errors. There are some items you will need to get sorted out first.
As one example, if you remember, you downloaded a JSON file, your File Name for that will most
likely be different than what is hard-coded in the Google Sheets Quickstart sample. Let us go through
the code chunk by chunk and tell you what you will need to change so you are prepared to connect your
NetBeans application to your Google Cloud project.

Step 8: Running SheetsQuickstart Java Application

First order of business is, you need to change the Application Name in the code. You have to add your
actual Google Cloud project information. If you need to remember what you called your project, take
look at Step 1 at the beginning of these Journal Entries.

We are highlighting the most important parts of the code so you can complete your own. Be sure make
the modification in the full sample posted about mid-portion of the Journal Entries (Step 5)... We want
to go through what we did to get it to work beyond the configuration so you are successful.

Hint: In our experience, what actually worked for us was the Application ID associated with the
Project Name, as opposed to the name itself, thus SocialMedia did not work but the Id linked to Project

Name SocialMedia in our Google Cloud account worked...

*If you are running into issues, remember to switch to the Project Id...

The second thing that was needed was to pull in the JSON file to grab our Cloud project credentials.
Without your JSON, you will have no chance getting a connection to the Cloud Application...

We showed you how to create your credentials in Step 2 in this document. Go take a look there to get
a sense where you might have downloaded it. You will also get a pretty good idea how to reference the
file in your project if you look at Step 6 of the documentation, when we discussed our Resources folder
with you...

Here is what it looks like in our version of the code

Hint: You can rename the downloaded JSON so it reads credentials.json, but in this case we kept
ours as is. You are obviously looking at a portion of the file name for security reasons. The goal is you
want to make sure it is place in your Resources folder (see Step 6), example Resources/Google_Auth
in your project.

The next portion in the code that demands attention is the method that reads the actual Spreadsheet. If
you did not create one yet, this is a good time to do so. You are going to need the ID of that
Spreadsheet, which you can collect from the URL after you create the web file.

Take a look at this example from Google:

Journal Entry
2021.10.22.6.55.AM

Immediately after creating your first Sheet, you can either rename the SheetName in the tab below,
which will likely be called Sheet1, or you can change to something more meaningful.

If our case, we left it as is...

So, in our version of the code, we are reading Sheet1 in this fashion

Before you can actually do this however, you need to first be able to run your code to connect to your
Google Cloud project to gain permission to reach the Spreadsheet in your Google Drive Account. The
first time you run the code from NetBeans, your default browser will make an attempt to connect to
your Google (existing) account.

Hint: Your Google account should be one that is, first of all valid, and it must be one that was used
to connect to the your Google Drive in the first place, and the same account that was used to create the
Google Cloud Console project. When your browser launches your application and your are prompted
to sign, you must use that and only that account...

If your Cloud App has not yet been verified with Google, you will need to go through the verification
process. An email similar to the following will be deposited to your inbox. After you have filled out
the necessary information.

Verification has to occur prior for your project to being able to give Google account access to run the
local Java Application.

Hint: If you recall, in Step 2, after creating your Credentials, you filled out some information
through the Oauth Consent screen (excerpt below) which generated the above email to your Google
account.

In the email, Google is telling you that you can move ahead and give your Cloud project permission to
use your existing Google account to continue. That will then allow you to run your application based
on the Non-restrictive scopes you setup in your Cloud project. When you make your first attempt to
run your local App through NetBeans, your browser will pull up your Google sign in form to choose an
account to use to run the application. Once you select the account, Google will ask permission to grant
access to that account to continue... After your project grants permissions to your Google account, you
will see the following in your browser.

The above looks worse than it is, Google is just making sure that you are aware a Local application
from a localhost server is trying to connect to a Cloud project...

All you have to do here is go to Advanced, and continue running the application. Once you are able to
continue, you will see below message in your browser. Google will receive the verification of your
App through the browser as consent that the App can run from now on using that Google Account.
This is a one-time action, you will never see the following message again.

If you check your email, you should see a message from Google stating the following

Now, you should go back to your Gradle application to see the results of your first launch, which
should generate a list of data based on any range you set forth in your code. In our case, we wanted to
return two column Developer and Code/Design, stated in the spreadsheet's A2 : B range.

And there you have it....

Conclusion:
It took 38 pages to do this for you, but we hope it was worth it... your very own Google Sheets v4
Gradle Java application in NetBeans 12 from scratch. Our next trial will deal with a local IBM DB2,
Oracle 12, and/or MySQL database values into Google Sheets... Do stay tuned!

Courtesy: Dököll Solutions, Inc.
Version: 2021.10.24.12.33.AM

	How-To Create a Google Sheets v4 Java Project
	Enable a Google Workspace API
	Managing API keys
	Creating an API key

	Create the OAuth Web Client ID

